Basic Rh – Special Considerations

Objectives:

- 1. Discuss Rh haplotypes, using both Fisher-Race and Weiner nomenclature, and explain how to determine f status using other Rh typings.
- 2. Compare and contrast weak D and partial D.
- 3. List unique circumstances in which an antibody might have Rh specificity.

Quick lesson:

There are >50 antigens in the Rh blood group system. However, 5 are considered "common." They are... D, C, E, c, e

	Haplotype Fisher-Race nomenclature	Haplotype Weiner nomenclature
	DCe	R ₁
Rh (D)	DcE	R ₂
positive	Dce	Ro
	DCE	R _z
	dce	r
Rh (D)	dCe	r'
negative	dcE	r"
	dCE	r ^y

Rh antigens are inherited as "haplotypes," one from each parent:

The three most common haplotypes in Caucasian individuals are... R_1 , R_2 , r

The most common haplotype in individuals of African descent is... R_0

1

Nebraska Community Blood Bank **& New York** Blood Center

So, if you inherit **DCe** from mom, and **DCe** from dad, your genotype (using Fisher-Race nomenclature) would be:

DCe/DCe

In Weiner nomenclature, your genotype would be

R_1R_1

The common Rh antigens expressed on your cells would be... D, C, & e

The common Rh antigens NOT expressed on your cells would be... E&C

Haplotype inherited from mom	Haplotype inherited from dad	Haplotypes (wiener nomenclature)	Common Rh antigens expressed on cells	Common Rh antigens NOT expressed
DcE	dce	R ₂ r	D, E, c, e	С
DcE	DcE	R_2R_2	D, c, E	С, е
dce	dCe	r'r	С, с, е	D, E
DCe	DCe	R_1R_1	D, C, e	Е, с
Dce	dce	R _o r	D, c, e	С, Е
dce	dce	rr	с, е	D, C, E

By testing for the common Rh antigens, we can infer the most probable genotype:

D	С	Ε	С	е	Probable genotype	Other possible genoty	/pes	
+	+	0	0	+	R_1R_1	R₁r′		
+	+	0	+	+	R₁r	R _o r' R ₁ R ₀	We s probab R ₁	ay this is le, because and R ₂
+	+	+	+	+	R₁R₂ ◀	R ₁ r" R ₂ r' <u>R₂Ro</u> R ₂ r R ₀ r ^v	haplo very co the pos incl co hap	otypes are ommon. All e other sibilities ude less mmon olotypes

Community Blood Center

VATIVE

2

Nebraska Community Blood Bank **& New York** Blood Center

f antigen:

- Rh antigen (sometimes listed on antigrams, sometimes not)
- Anti-f is clinically significant antibody made by individuals lacking f antigen
- Anti-f should be "ruled out" in antibody workups (like other clinically significant antibodies to common RBC antigens)

The f antigen is expressed...

...when c and e are present on the same haplotype (in *cis*)

f expression										
Haplotypes that express f	D <u>ce</u> = R ₀ d <u>ce</u> = r									
Haplotypes that don't express f	$DCe = R_1$ $DcE = R_2$ $DCE = R_Z$ dCe = r' dcE = r'' $dCE = r^y$									

Interestingly...

- R_or (D<u>ce</u>/d<u>ce</u>) expresses f (double dose!)
- R₁R₂ (DCe/DcE) doesn't express f (c & e are on different haplotypes)

You can tell if a cell expresses f by:

				Rh			K	Kell Duffy			Ki	dd	MNS			
		D	С	Е	с	е	К	k	Fy ^a	Fy ^b	Jk ^a	Jkb	Μ	Ν	S	S
1	R_1R_1	+	+	0	0	+	0	+	+	+	+	+	+	+	+	+
3	R_2R_2	+	Δ	<u>т</u>	+	Δ	Δ	Ŧ	Ŧ	0	+	+	+	0	+	+
4	R _o r	+	Look	ing at	wien	er non	nencla	ature:		0	+	0	+	+	0	+
5	r'r	0	reme	mber	, R _o (C) <u>ce</u>) ar	nd r (d ce) express f			0	+	0	+	+	0	0
6	r"r	0		+	+	+	U	+	U	+	+	+	0	+	0	+
7	rr	0	0	0	+	+	+	+	0	+	+	0	+	0	+	+

You can also tell if a cell expresses f by observing which of the common Rh antigens are expressed and inferring the most probable genotype:

			Rh				Probable genotype: R ₁ R ₁	d		Μ	MNS	
	D	С	Е	С	e,	К	This cell is f-negative	Jkb	Μ	Ν	S	S
1	+	+	0	0	+	0			+-	+	+	+
2	+	+	0	0	+	+/	Probable genotype: Ro) r	0	+	0	+
3	+	0	+	+	0	\checkmark	This cell is f-positive (double	e dose)	+	0	+	+
4	+	0	0	+	+	0			+	+	0	+
5	0	+	0	+	+	6	Probable genotype: r"r	r	+	+	0	0
6	0	0	+	+	+	0	This cell is f-positive (single of	dose)	0	+	0	+
7	0	0	0	+	+	+			+	0	+	+
8	0	0	0	+	+ •	0	Probable genotype: rr	r	0	+	+	+
							This cell is t-positive (double	e dose)				

Practice: does this cell express f? (Fill in the blanks)

D	С	Е	с	е	Probable genotype	Does this cell express f?	If so, double or single dose?
+	0	+	+	0	R_2R_2	No	NA
+	0	+	+	+			
0	+	0	+	+			
0	0	0	+	+			
+	+	0	0	+			

Answers:

D	С	Е	с	е	Probable genotype	Does this cell express f?	If so, double or single dose?
+	0	+	+	0	R_2R_2	No	NA
+	0	+	+	+	R ₂ r	Yes	Single
0	+	0	+	+	rr	Yes	Single
0	0	0	+	+	rr	Yes	Double
+	+	0	0	+	R ₁ R ₁	No	NA

Rh Variant Alleles:

- Mutations in RHD or RHCE gene
- May code for antigens different than conventional Rh antigens (weak expression or partial, missing some antigen epitopes)
- More common in individuals of African descent
 - Antigen positive individual makes corresponding alloantibody when exposed to conventional antigen (often occurs in sickle cell patients)

 Difference between Weak D and Partial D Generally, the following differences apply, though there are exceptions. Look in the Blood Group Antigen FactsBook to see just how many different weak D and partial D variants are known! 													
Conventional D Weak D Partial D													
Explanation	D antigen is complete and numerous on RBC surface D antigens on RBCs is much lower than usual. they are missing epitope												
Representation of RBCs													
Do they make alloanti-D?	No	NO: Weak D types 1, 2 & 3 do NOT make anti-D when exposed to RBCs expressing conventional D antigen. Weak D types 4.0 and 4.1 can also be treated as D+.	Yes: may make anti-D (antibody to missing epitopes of D) when exposed to RBCs expressing conventional D antigen										
How is testing affected?	RBCs react 3-4+ with anti-D reagents	Some reagents may not detect weak D (Weak D= \leq 2+ reactivity at immediate spin, but moderately or strongly reactive at IAT)	RBCs may react with some anti-D reagents (monoclonal) strongly because the reagent antibody is directed against epitope(s) the patient's cells express.										

More on Weak vs Partial D

- Serologically, can't distinguish weak or partial D types
 - Serologically, may result in discordant D typing (D+ one time, D- the next)
 - D+ individual makes alloanti-D
- *RHD* genotyping can differentiate and guide transfusion (and Rh immune globulin) recommendations
- Variant alleles also occur in the *RHCE* gene, leading to partial or weak expression of other Rh antigens

Practice:

	Anti-D	Anti-D
Patient cells	+	0
Positive control	+	+
Negative control	0	0

1. List possible explanations for these results:

2. What is the best way to guide transfusion recommendation in this case?_

Answers: 1. Variant D expression (weak and/or partial), Anti-D antibodies to different epitopes of D (different clones), Tested by different methods (IS vs IAT). 2. RHD genotyping

Antibodies with Rh specificity?

- See chart below
- Differentiated by:
 - Patient history (transfusion history, drug history)
 - Serology (DAT/autocontrol result, eluate testing)
 - RHD/RHCE genotyping (to identify variant alleles indicating variant antigen expression)

	Explanation	Example	Further information
Alloantibody	Individual makes antibody to antigen his/her cells lack	e-negative patient makes anti-e	
Alloantibody	Individual makes antibody to antigen present on his/her cells, autocontrol (if not recently transfused) negative	e-positive patient makes anti-e	 Patient's cells express partial antigen, and antibody is to epitope(s) patient is missing Genotyping can help characterize antibody as alloantibody
Autoantibody	Individual makes antibody to antigen present on his/her cells, autocontrol positive	e-positive patient makes autoanti-e	Genotyping can help characterize antibody as autoantibody
Drug antibody	Individual makes antibody to drug that reacts with Rh specificity (often e-specificity)	e-positive patient makes drug antibody with e-specificity	 Transfusion history and drug history can infer that antibody is due to drug One example drug: Zosyn (piperacillin/tazobactam)

Practice:

				Rh			Ke	Kell		Duffy		Kidd		Μ	NS		Results
		D	С	Е	С	е	К	k	Fy ^a	Fy ^b	Jkª	Jkb	Μ	Ν	S	s	LISS IAT
1	R_1R_1	+	+	0	0	+	0	+	+	+	+	+	+	+	+	+	3+
2	R_1R_1	+	+	0	0	+	+	+	0	+	0	+	0	+	0	+	3+
3	R_2R_2	+	0	+	+	0	0	+	+	0	0	+	+	0	+	0	0
4	R_2R_2	+	0	+	+	0	+	+	0	+	+	0	0	+	0	+	0
5	r'r	0	+	0	+	+	0	+	+	0	+	0	+	+	0	0	3+
6	r"r	0	0	+	+	+	0	+	0	+	+	+	0	+	0	+	3+
7	rr	0	0	0	+	+	+	+	0	+	+	0	+	0	+	+	3+
8	rr	0	0	0	+	+	0	+	+	+	0	+	0	+	+	+	3+
Auto		+	+	0	0	+	0	+	+	+	0	+	+	+	0	+	3+

Assuming the patient has NOT been recently transfused, which of the following are possible explanations of the above results? (choose all that apply)

- a) alloantibody- patient has no variant Rh alleles
- b) alloantibody patient has variant Rh alleles
- c) autoantibody patient has no variant Rh alleles
- d) drug antibody patient has taken a drug, and made antibody with Rh specificity

Answers: c,d

Assessing Understanding

1. Fill in the following chart:

Serologic Typings					Probable genotype	f antigen expressed?
D	С	Ε	с	е	(Wiener nomenclature)	(double/single dose)
0	+	0	+	+		
+	+	0	0	+		
+	0	+	+	+		
0	0	0	+	+		

2. Which of the following is true regarding differences between weak and partial D?

- a. Weak D generally refers to expression of antigen missing epitope(s).
- b. Individuals with partial D antigens are best treated as D-negative.
- c. Partial D refers to fewer D antigens expressed (quantitative difference).
- d. Patients with Weak D Types 1, 2, 3, 4.0 & 4.1 should be treated at D-negative.

3. What is the easiest way to differentiate Rh alloantibody from autoantibody with Rh specificity in a patient who has NOT been recently transfused?

- a. Review the patient's drug list
- b. RHD and RHCE gene sequencing
- c. Serologic result of the DAT/autocontrol
- d. Determine patient's f status based on serologic typings

Answers: 1.

Serologic Typings					Probable genotype	f antigen expressed?
D	С	Е	с	е	(Wiener nomenclature)	(double/single dose)
0	+	0	+	+	r'r	Yes, single
+	+	0	0	+	R_1R_1	No
+	0	+	+	+	R₂r	Yes, single
0	0	0	+	+	rr	Yes, double
						2. b
						3. c

Blood Bank

7

Nebraska Community Blood Bank **& New York** Blood Center

